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Executive Summary

This project addresses the critical challenge of racial bias in 3D face recon-
struction, which is an issue of both technical and ethical significance. Our
work aims to develop a more equitable and accurate method for 3D facial
reconstruction by integrating a learned illumination prior, which is trained
independently from any face model. This approach seeks to mitigate the
biases inherent in traditional 3D Morphable Models (3DMMs) that often
fail to represent diverse facial features accurately under various lighting
conditions.

Project Aims and Key Objectives The primary aim of this project is to
advance the state of 3D face reconstruction by reducing racial bias and
improving accuracy across different skin tones. Key objectives include:

• Developing a novel approach to facial reconstruction that incorporates a
learned illumination prior independent of face models.

• Enhancing albedo estimation to accurately separate intrinsic skin color
from the effects of lighting, leading to more precise and unbiased recon-
structions.

• Evaluating the proposed method against existing benchmarks to validate
its effectiveness and fairness.

Motivation The motivation for this project stems from the increasing in-
tegration of 3D face reconstruction technologies in everyday applications,
including facial recognition, virtual reality, and digital media. These techno-
logies are becoming ubiquitous, and it is critical to ensure they are inclusive
and do not perpetuate systemic biases. Achieving fair and accurate 3D
reconstructions of all individuals, regardless of skin color, is not only a tech-
nical challenge but a moral imperative. Addressing this issue is essential to
promote social justice, equity, and trust in technological advancements.

Approach and Methodology The approach taken in this project involves
the integration of a learned illumination model trained on a diverse dataset
that captures natural lighting variations. This model is decoupled from
the facial model to mitigate bias. The methodology includes several key
phases:

• Data Preprocessing: Normalization, landmark detection, and segmenta-
tion of high-resolution images.
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Executive Summary

• Model Development: Integration of the FLAME model for dynamic facial
structuring, BalancedAlb model for diverse albedo texturing and the
RENI++ model for handling complex lighting interactions.

• Rendering and Optimization: Initial rendering using Lambertian reflect-
ance and iterative refinement of model parameters through "Analysis by
Synthesis" to closely match synthetic outputs with real-world inputs.

Results Achieved The results of this project demonstrate significant im-
provements in the accuracy and fairness of 3D facial reconstructions. The
learned illumination model successfully mitigates racial bias, providing
more consistent and equitable representations across different skin tones.
The enhanced albedo estimation effectively distinguishes between skin
color and lighting effects, leading to more accurate reconstructions.

Evaluation Against Success Criteria The success of this project was
evaluated against the following criteria:

• The bias score, measured as the standard deviation of Individual typology
angle (ITA) errors across different skin groups, was significantly reduced,
indicating improved fairness and accuracy in facial reconstructions.

• The accuracy of albedo estimation and geometric precision was assessed
through qualitative and quantitative comparisons with state-of-the-art
methods. Our model consistently outperformed others in these evalu-
ations.

• The model’s applicability to various lighting conditions and its flexibility
in handling different facial expressions and poses were demonstrated
through extensive testing and real-world applications.

Implications for Future Work The implications of our results extend bey-
ond technical improvements, fostering a more inclusive approach to 3D
facial reconstruction technology. Future work will focus on:

• Exploring additional methods to further disentangle facial features from
lighting effects and expanding the diversity of validation datasets.

• Enhancing the model’s adaptability to indoor and artificial lighting condi-
tions, which remain challenging.

• Continuing to address ethical considerations in the development and
deployment of 3D reconstruction technologies to ensure equitable rep-
resentation and application across all demographics.

In conclusion, this project represents a significant step toward creating fairer
and more accurate 3D facial reconstruction technologies. By addressing
the limitations of existing methods and proposing innovative solutions, we
have laid the groundwork for future advancements in this critical area of
computer vision and graphics.
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1 Introduction

1.1 Overview of 3D Face Reconstruction Challenges

Three-dimensional (3D) face reconstruction is a pivotal technology in the
fields of computer vision and graphics, with extensive applications including
biometric authentication, animation, virtual reality, and medical procedures.
This technology aims to capture the complex geometry of human faces
using a combination of imaging techniques and computational algorithms.
The importance of accurately reconstructing 3D facial models lies in their
ability to provide a realistic and relatable interface for human-computer
interaction, which is crucial for applications such as augmented reality (AR),
facial recognition systems, and personalized avatars in digital media [1].

Historically, the challenge of 3D face reconstruction has involved capturing
the intricate details of the human face, such as skin texture and subtle
expressions, under varying lighting conditions. Early techniques relied
heavily on multiple images or structured light to create a depth map of the
face [2]. While early methods to reconstruct faces from a single image do
exist [3], they faced significant difficulties, particularly in separating albedo
from illumination and accurately modeling shape. However, advancements
in machine learning and 3D imaging have led to the development of more
sophisticated methods that can generate high-fidelity 3D models from a
single image or in real-time [4], [5].

Recent innovations in deep learning, particularly convolutional neural net-
works (CNNs), have significantly improved the accuracy and efficiency
of 3D face reconstruction. These models are trained on vast datasets of
faces to learn depth perception and facial geometry, which enables them
to predict 3D shapes from new images with high precision [6], [7]. Fur-
thermore, the integration of generative adversarial networks (GANs) has
enhanced the ability to reconstruct faces with realistic textures and fine
details, thereby overcoming some of the limitations of earlier reconstruction
techniques [8].

Despite these advances, 3D face reconstruction continues to face chal-
lenges, particularly in handling diverse facial expressions, orientations, and
occlusions. Ongoing research is addressing these issues through more
robust algorithms and hybrid approaches that combine traditional geometric
modeling with machine learning [9], [10].
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1.2 Existing Approaches and Their Limitations

The landscape of 3D face reconstruction is rich with diverse methodolo-
gies, each aiming to bridge the gap between two-dimensional imagery and
three-dimensional facial models. These approaches range from classical
optimization techniques, which meticulously adjust model parameters to
match input images, to modern deep learning strategies that leverage vast
datasets to learn complex mappings from 2D to 3D. Central to many of
these methodologies is the reliance on 3D Morphable Models (3DMMs), a
paradigm that encapsulates a wealth of facial information within a manage-
able set of parameters [3].

Despite the sophistication and advancements these approaches offer, they
are intrinsically bound by the limitations of their foundational models and
data. A predominant issue arises from the bias that stems from a historical
predominance of lighter-skinned subjects in the datasets used to train and
validate 3DMMs. As a result, the algorithms learn to associate certain
facial features and skin tones with specific 3D structures, skewing their
performance when faced with underrepresented groups [11]. Such disparit-
ies in algorithmic performance underscore the need for a more inclusive
approach to data collection and model training, ensuring that the diversity
of the human population is accurately captured and represented.

Furthermore, the challenge of intrinsic image decomposition, a process
crucial for separating the innate attributes of a face—such as shape and
texture—from external influences like lighting and camera angles [12]—re-
mains a significant hurdle. While multiple images or controlled lighting
conditions can aid in disambiguation, these requirements severely limit the
applicability of 3D face reconstruction in real-world, "in-the-wild" scenarios,
where images taken in uncontrolled settings present diverse lighting condi-
tions and poses, complicating the distinction between intrinsic and extrinsic
factors [13]. The reliance on specific, often biased, facial and illumina-
tion priors exacerbates the difficulty of achieving accurate reconstructions
across diverse populations and conditions [6].

Another critical limitation lies in the static nature of many 3DMMs, which
struggle to capture the dynamic range of human facial expressions. This
shortcoming not only affects the fidelity of the reconstructed models but
also their utility in applications requiring expressive, lifelike avatars or mod-
els [14]. Additionally, the computational complexity of some approaches,
particularly those employing deep learning, poses barriers to real-time
processing and application on resource-constrained devices [13].

1.3 The Problem of Racial Bias

In the domain of 3D face reconstruction, the spectre of racial bias casts
a long shadow, compromising the integrity and inclusivity of technological
advancements. This bias is not merely a technical oversight but a profound
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issue that reflects the underlying data sets and methodologies employed in
constructing 3DMMs.

Several studies have demonstrated the demographic biases (sex, age, race)
prevalent in biometrics, influencing face verification, age estimation, race
classification, and emotion classification [15]. Dedicated benchmark data-
sets and studies have exposed bias in commercial systems and proposed
algorithmic solutions to mitigate these issues [16].

The implications of such bias extend far beyond the realm of computational
inaccuracies, venturing into ethical and social territories. In applications
where 3D face reconstruction plays a pivotal role, from security and law
enforcement to digital entertainment and social media, the repercussions
of racial bias are tangible. For individuals with darker skin tones, the mis-
representation and misidentification risk is not just a matter of technological
failure but a potent source of systemic discrimination, raising significant
concerns about privacy, fairness, and social justice [17]. As these tech-
nologies become increasingly embedded in our daily lives, the urgency to
address and mitigate racial bias becomes paramount.

It is not merely a technical hurdle but a moral imperative to ensure that the
benefits of technological advancements are equitably distributed across
all segments of society [18]. The ethical-by-design approach suggested
by Brey and Dainow [19] emphasizes integrating ethical considerations
during the design phase of algorithm development; this approach is also
supported by the European Commission [20]. By advocating for interdiscip-
linary collaboration, this approach ensures that technological developments
are informed by cultural, sociological, and ethical perspectives, thereby
promoting a more holistic and responsible approach to innovation [21].

1.4 Our Contribution

Addressing the challenges and limitations entrenched in the domain of 3D
face reconstruction, particularly the pervasive issue of racial bias, our pro-
ject introduces a novel approach: the integration of a learned illumination
prior. This initiative represents a significant departure from traditional reli-
ance on biased 3DMMs and moves toward a more equitable and accurate
representation of diverse facial features under varying lighting conditions.

Novel Approach to Illumination – At the heart of our contribution is the
integration of an illumination model that is learned independently from
any face model. This model is trained on a diverse dataset that includes
a wide range of natural lighting conditions, aiming to accurately capture
the nuances of how different light interacts with various skin colors. By
decoupling the illumination model from the facial model, we mitigate the
racial bias that stems from the homogeneity of datasets used in traditional
3DMMs.
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Enhancing Albedo Estimation – A critical aspect of our method is its
focus on improving albedo estimation, a process integral to distinguishing
the intrinsic color of the skin from the extrinsic effects of lighting. Albedo
estimation has historically been a challenge in 3D face reconstruction, with
existing methods often conflating skin tone with shadow or light reflection.
Our learned illumination prior allows for a more nuanced disambiguation,
leading to more accurate and unbiased reconstructions.

Addressing the Limitations of Existing Methods – Our approach directly
confronts the limitations of existing 3D face reconstruction methodologies.
By leveraging a learned illumination model, we reduce the dependency
on large, biased datasets and controlled imaging conditions. This not
only enhances the applicability of our method in diverse and uncontrolled
environments but also paves the way for real-time processing capabilities,
breaking down barriers to widespread adoption.

Implications and Applications – The implications of our work extend
far beyond technical improvements. By fostering a more accurate and fair
representation of all individuals, our method holds the promise of advancing
applications in facial recognition, virtual reality, and digital media in a socially
responsible manner. We envision a future where technologies powered
by our approach contribute to reducing systemic biases and promoting
inclusivity in digital and real-world spaces alike. We envision applying our
model to challenging tasks such as re-illuminating 3D facial models under
different poses or expressions to recreate varied depictions of the same
face, thus demonstrating the versatility and robustness of our system.

Addressing the Limitations of Existing Methods – In presenting our
learned illumination prior, we acknowledge the beginning of an ongoing
journey toward eliminating racial bias in 3D face reconstruction. Our work
lays the foundation for future research to build upon, encouraging the ex-
ploration of additional methods to further disentangle the complex interplay
of facial features and lighting. As we move forward, our goal remains stead-
fast: to ensure that advancements in technology reflect and respect the
diversity of the human experience.
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2 Related Work

2.1 Foundational Concepts in Computer Graphics

The integration of 3D modeling, projection, and illumination is fundamental
in creating a cohesive visual experience in computer graphics. 3D models
provide the structural basis, defining the geometry and surface character-
istics of objects within a virtual environment. Projection techniques then
translate these 3D models into 2D views by simulating how light travels and
images are formed through cameras and the human eye, which is crucial for
the visualization on digital displays. Finally, illumination models apply light-
ing effects to these projections, enhancing realism by mimicking how light
interacts with different materials and surfaces in the real world. This inter-
play not only contributes to the aesthetic quality of the final image but also
to the practical understanding and manipulation of objects in applications
ranging from virtual reality to architectural visualization. Each component is
reliant on the others; accurate modeling is necessary for effective projection,
and both are incomplete without the nuanced effects provided by advanced
lighting techniques, illustrating a symbiotic relationship that drives much of
the progress in the field of computer graphics.

2.2 3D Morphable Models

3D Morphable Models (3DMM) have revolutionized the understanding and
reconstruction of facial structures in computer vision and graphics. Origin-
ally introduced by Blanz and Vetter in 1999 [3], these models employ a
statistical approach to represent variations in human faces through a com-
bination of shape and texture data derived from a dataset of 3D face scans.
The fundamental premise of 3DMMs lies in the application of Principal
Component Analysis (PCA) to these scans, creating a low-dimensional
linear subspace that can effectively capture the diversity of facial features
in a controlled manner. One can morph between these faces in PCA space,
transfer face characteristics from one face to a different face, or generate
new faces, which gave the model its name, morphable model [22].

Subsequent research has expanded the capabilities of 3DMMs by integrat-
ing more complex models of facial expressions and more diverse datasets.
Amberg et al. [23] extended the basic PCA model to include expressions
by learning PCA spaces from residual vectors of expressions, thus enhan-
cing the model’s sensitivity to facial dynamics. Further contributions, such
as by Li et al. [24], combine linear shape spaces with articulated facial
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components like jaws and eyeballs, enabling more nuanced animations
and realistic portrayals of facial expressions [25]. The introduction of 4D
scans has also allowed for the capture of temporal changes in expressions,
significantly improving the fidelity and application scope of these models
[26].

One of the persistent challenges in the development of 3DMMs is achieving
photorealism, particularly when transforming simpler, compact models into
high-quality, realistic outputs [27]. For instance, PCA-based models, while
efficient and compact, often lack the fine detail needed for high-resolution
outputs due to their global nature. The FLAME project [24] addresses
this by learning from thousands of accurately aligned 3D scans, aiming to
enhance the realism of generic face models used in various multimedia
applications. Concurrently, efforts like those by Booth et al. [28], [29] to
learn from a linear face model from almost 10,000 diverse facial scans help
address the diversity and realism in generated face models by capturing a
broader spectrum of human facial variations.

In parallel, significant strides have been made in modeling facial textures
and albedos, which is crucial for achieving realistic coloration and illumin-
ation in facial reconstructions. Gecer et al. [30] notably advanced this by
employing Generative Adversarial Networks (GANs) to learn a nonlinear
texture model that captures high-frequency details often lost in traditional
linear models. This approach helps mitigate the common problems associ-
ated with shading effects, specular reflections, and camera-specific biases
that plague earlier models. However, challenges remain, particularly in dis-
tinguishing between albedo and illumination effects, a problem exacerbated
by the biases towards certain skin colors in existing models [31].

The future development of 3DMMs seems poised to increasingly leverage
in-the-wild data, which could democratize the inputs but also complicate the
separation of intrinsic facial features from environmental effects. Although
these methods still face challenges in accurately modeling non-Lambertian
surfaces which are essential for realistic rendering. This approach, while
expanding the applicability of 3DMMs, necessitates careful consideration of
ethical aspects, particularly in terms of bias and representation. An ongoing
concern is the adequate representation of diverse skin tones and facial
features across different ethnicities, which is critical for the equitable applic-
ation of technology in areas such as digital identity verification, animation,
and virtual reality [32].

Smith et al. [33] presents a novel statistical model designed to capture
and represent the albedo, an inherent color properties of human faces.
This model enhances the realism and accuracy of facial reconstructions by
separating albedo from lighting effects, using high-resolution face scans
and PCA to derive a low-dimensional representation of albedo variations.
When integrated with existing 3DMMs, this model significantly improves ap-
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plications such as face recognition and photorealistic rendering, particularly
under varying lighting conditions.

3DMMs have come a long way since their inception, growing from basic
PCA-based models to complex systems capable of rendering high-fidelity,
dynamic facial expressions. The integration of diverse data sources and
advanced machine learning techniques continues to push the boundaries of
what these models can achieve, promising ever more realistic and inclusive
applications. However, as the technology advances, it must also confront
the challenges of ethical application and representation, ensuring that it
serves a global and diverse user base.

2.3 Inverse Rendering of Faces

Inverse rendering addresses the recovery of object and scene properties,
such as geometry, reflectance, and illumination, from image data. This
process is foundational for understanding and replicating the appearance
of objects, particularly human faces, under varied lighting conditions [34].
Traditionally, inverse rendering is complicated due to the challenge of
discerning multiple properties simultaneously from a single image. As
highlighted by Ramamoorthi and Hanrahan [35], differentiating between
texture and lighting without additional information or assumptions remains
particularly problematic.

The use of 3DMMs has proven extremely effective in the field of face ana-
lysis. These models capture the intrinsic properties of faces, such as shape
and texture, independently of extrinsic factors like illumination or camera
angle. In recent advancements, various methods have been employed,
including the use of depth maps, surface normals, and particularly meshes
that ensure dense correspondence across faces. Dense correspondence
refers to the method of mapping one set of face data to another in a way
that each point on one face has a corresponding point on the other, al-
lowing for precise comparisons and analyses. This approach is crucial for
creating accurate simulations of faces and provides essential constraints
that aid in solving inverse rendering problems, which would otherwise be
underconstrained. [13].

The integration of differentiable rendering into deep neural networks (DNNs)
has revolutionized 3D scene understanding. By allowing gradients of the
rendering process to be computed, differentiable rendering facilitates the
optimization of 3D scene parameters directly from 2D images. This method
bridges the gap between 2D image processing and 3D model optimization,
enhancing the capability of DNNs to understand and manipulate 3D data
efficiently [36].

Humans have a remarkable ability to infer vast information from a single im-
age, relying on cognitive priors developed through experience. NeRFactor
by Zhang et al. [37], although not focused on faces, builds on inverse
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rendering principles to reconstruct 3D scenes using neural radiance fields
(NeRFs). It forms strong priors on geometry, reflectance, and illumination
from large datasets, mimicking human perception. Traditionally requiring
multiple views or known lighting conditions, recent advances in NeRFactor
allow for high-quality reconstructions from limited input, making it practical
for everyday imaging scenarios.

Despite significant advancements, inverse rendering of faces using 3DMMs
still faces several challenges. The primary issue is the high degree of under-
constraint in single-image scenarios, where multiple interpretations of data
can lead to ambiguous results. Current research is focusing on overcoming
these limitations by integrating more robust data-driven approaches and
enhancing the ability to generalize across different face models without over-
fitting to specific dataset biases. As these technologies continue to evolve,
the accuracy and applicability of face rendering in real-world scenarios will
likely improve, leading to more realistic and personalized applications in
digital media, virtual reality, and automated facial recognition systems.

2.4 Projection Systems in 3D Modeling and Rendering

The concept of projecting a three-dimensional world onto a two-dimensional
image plane is pivotal in understanding camera models within the field of
3DMMs. This process, simply known as projection, encompasses several
models which vary in their fidelity to real-world camera behaviors. These
models, described here in ascending order of accuracy, are essential for
tasks such as camera calibration and pose estimation.

The scaled orthographic model simplifies the projection by assuming uni-
form scaling and orthographic projection, devoid of size, distance, or per-
spective ambiguities. While it may lack physical realism due to its linear
constraints on vertex position, translation, and scale, it serves practical pur-
poses in 3DMM applications, where distance to the camera is considerably
larger than the depth variation in the scene. This model is notably used by
Bas et al. [38], Blanz et al. [39], and others, who appreciate its simplicity
when complex perspective transformations are challenging.

Advancing the concept of the orthographic model, the affine projection
allows for arbitrary affine transformations including non-uniform scaling and
skew transformations. This model, while still linear, begins to approximate
perspective effects more closely. It is favored in scenarios where the
estimation of camera parameters needs to remain straightforward but more
flexible than the strict orthographic approach, as seen in works by Aldrian
and Smith [40] and Huber et al. [41].

At the pinnacle of realism in 3DMM camera models is the perspective pro-
jection, epitomized by the pinhole camera model. This model incorporates
intrinsic parameters such as the focal length and the principal point location,
directly affecting the final image formation. Unlike its simpler counterparts,
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the perspective model accounts for the effects of distance on the projected
shape, which becomes crucial at closer distances typical of "selfie" scen-
arios. This model’s adoption, particularly in the seminal works of Blanz
and Vetter [3] and subsequent studies like Cao et al. [42], underlines its
importance in accurately capturing the nuances of real-world projection.

The intricacies of these models underscore the ongoing challenges in cam-
era calibration, especially in deciphering the ambiguities related to shape,
scale, and focal length inherent in more complex models. Researchers
continue to explore these complexities, as highlighted by recent studies
by Bas and Smith [43] and Smith [44], who have critically analyzed the
ambiguities associated with perspective projections in practical applications.
Through the lens of these models, the dissertation projects forward, aiming
to harness these theoretical foundations to address practical challenges in
the application of 3DMMs to real-world tasks, where the choice of camera
model can significantly influence both the effectiveness and the efficiency
of the outcomes.

2.5 Illumination Models

Illumination models in computer graphics are fundamental in simulating
how light interacts with surfaces, contributing to the creation of visually
realistic environments. The foundation of illumination modeling in computer
graphics was laid by the introduction of the Phong reflection model by
Bui Tuong Phong in 1975 [45]. This model, pivotal for understanding
light simulation, incorporates ambient reflection, which uniformly lights
all surfaces; diffuse reflection, which scatters light broadly to create a
matte effect; and specular reflection, which creates sharp highlights on
shiny surfaces. An advancement of this model, the Blinn-Phong model
introduced by Jim Blinn in 1977 [46], optimized the calculation of specular
reflections, making the process computationally more efficient by altering
the vector calculations used in the original Phong model.

Subsequent developments in illumination models sought greater physical
accuracy through techniques like radiosity and ray tracing. These methods,
discussed by Cohen et al. [47] and Whitted [48], treat light as a wave that
undergoes reflection, refraction, and absorption, thereby enhancing the
realism of the scenes but increasing the computational load, which is a
significant consideration in real-time graphics.

A major breakthrough in efficient illumination modeling came with the use
of Spherical Harmonics (SH), which allowed for the real-time rendering of
complex lighting effects by approximating light distribution in a scene. This
technique, detailed by Green [49] compresses lighting information into a
series of coefficients, reducing the computational demands significantly. SH
has been particularly beneficial in video games and virtual reality, offering
an efficient means to render diffuse inter-reflections and soft shadows.
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The Precomputed Radiance Transfer (PRT) method by Sloan et al. [50]
extends the capabilities of SH by facilitating the interaction of light with dy-
namic objects within a precomputed lighting environment. This adaptation
is crucial for applications in dynamic settings such as gaming and virtual
reality, where complex lighting environments must be rendered in real-time.

Further enhancements in handling environments with high-frequency light-
ing variations were achieved through Wavelet Transform methods, which
provide a localized spatial frequency analysis, suitable for detailed and
contrast-rich visual environments. Additionally, recent research has ex-
plored the potential of machine learning in predictive rendering and illu-
mination. These innovative approaches, including the work of Barron and
Malik [51], leverage deep learning to predict and manipulate illumination in
images, which is useful for tasks like photo relighting and ensuring color
consistency across different lighting conditions.

The concept of illumination priors, which utilize pre-existing knowledge
about lighting conditions to influence image processing tasks, has proven
beneficial in scenarios where direct measurement of illumination is not
feasible, especially in inverse-rendering tasks. In these tasks, the goal is to
deduce physical properties of a scene—like shape and reflectance—from
the observed images. Barron and Malik’s method for estimating shape,
reflectance, and illumination from a single image exemplifies the use of a
low-dimensional parametric model as an illumination prior. This approach
simplifies the complex challenge of separating illumination from reflectance
in image processing, a key step in inverse rendering.

The exploration of illumination models in computer graphics has transitioned
from simple, less computationally demanding models to more sophisticated
techniques that offer greater realism and efficiency. The integration of
advanced mathematical techniques and machine learning into illumination
modeling has opened new avenues for research and application, particu-
larly in the realm of 3DMMs. This evolution reflects a continuous pursuit of
more efficient and realistic rendering techniques in the ever-growing field
of computer graphics.

2.6 Neural Illumination: Advancements in Lighting Representation

Neural illumination techniques represents a significant shift in the domain
of computer graphics and image processing [52]. They are characterized
by their adaptive learning capabilities, where the models dynamically learn
from a vast range of lighting conditions using deep learning methodologies.
This adaptiveness enhances their ability to predict and recreate complex
light interactions, significantly enriching the visual quality of virtual environ-
ments by decompsing the task into several simpler differentiable sub-tasks
[53]. The models excel in dynamic rendering, adjusting in real-time to
changing light conditions to produce more realistic scenes. Furthermore,
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these approaches are particularly adept at solving inverse lighting prob-
lems—deducing lighting conditions from observed images, which is crucial
for accurate scene reconstruction and photorealistic rendering. [54]

The Rotation-Equivariant Natural Illumination (RENI) [55] model stands out
as a pivotal advancement in the field, integrating generative capabilities with
a rotation-equivariant design to efficiently model natural illumination. RENI
utilizes a rotation-equivariant neural field representation, which is crucial for
maintaining consistent lighting across different orientations, thereby enhan-
cing the rendering of non-Lambertian surfaces while preserving essential
high-frequency lighting effects. This model leverages Vector Neurons for
adapting spherical images and employs a variational autodecoder, estab-
lishing a robust framework for generative tasks related to spherical signals.

RENI has demonstrated remarkable effectiveness in inverse rendering
tasks, showing substantial improvements over traditional lighting mod-
els. By directly modeling environmental lighting instead of relying on pre-
integrated lighting with a fixed Bidirectional Reflectance Distribution Func-
tion (BRDF), RENI supports flexible interaction with arbitrary BRDFs during
inference. This flexibility is pivotal for extending its application beyond
traditional rendering to tasks like shape recovery from specular reflections.
Moreover, RENI’s handling of High Dynamic Range (HDR) data ensures
that the rendering process remains realistic, crucial for applications where
natural lighting plays a significant role.

Building upon the foundation laid by RENI, RENI++ [56] introduces sev-
eral technological enhancements that significantly broaden its application
scope and improve its performance in complex lighting environments. The
transition to a Transformer-decoder architecture with positional encoding
marks a substantial advancement in handling complex data dependencies
more effectively. Moreover, the introduction of a scale-free loss and VN-
Invariant layer in RENI++ enhances the model’s generalization capabilities
and computational efficiency, particularly in challenging HDR scenarios.

Neural illumination, particularly through advancements like RENI and
RENI++, plays a crucial role in the integration with 3DMMs and differ-
entiable rendering techniques. These models can significantly benefit
from the sophisticated lighting simulations provided by neural illumination,
enhancing the realism and accuracy of rendered images, especially in ’in-
the-wild’ scenarios where real-world lighting conditions are unpredictable
and complex [57]. As neural models continue to evolve, they promise to fur-
ther revolutionize the field by providing even more detailed and responsive
lighting solutions, pushing the boundaries of what is possible in computer
graphics and beyond.

11



2 Related Work

2.7 Benchmarking Racial Bias

Feng et al. [58] highlights a significant gap in the existing resources for
evaluating facial albedo estimation: the absence of a comprehensive data-
set that accurately represents diverse skin tones and real-world lighting
conditions. To address this, the researchers developed a novel dataset
featuring high-quality 3D scans of heads from a balanced range of skin
colors and ages, rendered under various lighting scenarios using HDR
environment maps. This dataset was designed to serve as a benchmark,
referred to as FAIR (Facial Albedo Independent of Race), for evaluating
both the accuracy and fairness of facial albedo estimation methods.

A central methodological contribution of the research is the introduction
of a set of refined metrics for evaluating albedo estimation. The use of
the Individual Typology Angle (ITA) [59], calculated from the CIE Lab*
color space, represents an innovative approach to quantifying skin tone
objectively and uniformly. The higher the ITA, the lighter the skin and this
allows for categorization into six skin types, facilitating a more nuanced
analysis of performance across different skin colors [60].

Using the new dataset and metrics, the researchers conducted a compre-
hensive analysis of existing facial albedo estimation methods. The findings
revealed a consistent bias towards lighter skin tones across all methods
tested. This benchmark enabled the researchers for the first time to quantify
the bias of these methods, presenting a clearer picture of the challenges
and limitations inherent in current technologies.

To further address these challenges, Feng et al. [58] leverages the insight
that the entire scene image, rather than just a cropped image of the face,
contains valuable information about lighting. This aids in the disambiguation
of lighting and albedo contributions. By conditioning on both the face region
and a global illumination signal derived from the scene image, TRUST
effectively regresses facial albedo, resulting in more accurate and fair
outcomes on their benchmark.

Da’Prato-Shepard et al. [61] built upon similar insights by integrating
an RENI, illumination prior learned independently from the 3DMM model
representation, providing a constrained search space of illumination and
thus, more accurate albedo estimation. Their ablation study justified the
model component’s choices, demonstrating less bias compared to popular
methods like SH. However, even though they managed to reduce bias for
darker skin, they had visibly increased bias for lighter skin. Additionally,
their implementation showed that given a scene, their inferred environment
map was different for different face subjects, and the environment map
looked nothing like the scenic lighting and was generally dark, which could
have explained their low bias for darker skin.
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3.1 Architectural Overview

Figure 3.1: Schematic Representation of the 3D Facial Reconstruction Work-
flow. This diagram provides a visual overview of the system’s structured process,
showing the sequential phases involved in transforming high-resolution 2D images
into photorealistic 3D facial renderings.

Our architecture is designed to encompass various phases that collectively
contribute to the robust and efficient 3D facial reconstruction process. Each
phase plays a crucial role, and their interactions are pivotal in achieving
high-quality outcomes. The process employs an "Analysis by Synthesis" ap-
proach in the optimization phase to iteratively refine the model parameters,
ensuring the synthetic outputs closely resemble the real-world inputs.
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Here’s how each phase functions and interconnects within the architecture:
Data Preprocessing: This foundational phase deals with the collection
and preparation of input data. High-resolution images undergo several
preprocessing steps, including normalization, landmark detection, and
segmentation. This ensures that the data is uniform and standardized,
setting a solid base for accurate synthesis and modeling. Model Devel-
opment: Central to our architecture, this phase features the integration
of advanced modeling techniques using the FLAME and FLAMETex for
dynamic facial structuring and texturing, respectively. Additionally, the
RENI++ is incorporated to handle complex lighting interactions, essential
for achieving realism in the outputs. This phase generates the initial 3D
and illumination models based on the template data. Rendering: Before
optimization, an initial rendering of the synthesized 3D models is performed
to convert them into photorealistic 2D images. This rendering uses tech-
niques such as z-buffering and Lambertian reflectance to closely mimic
real-world textures and lighting conditions. The rendered images serve as
a baseline to compare against actual images, facilitating the identification
of areas needing refinement. Optimization: Utilizing the rendered images,
this phase applies the "Analysis by Synthesis" methodology to refine the
models. It involves adaptive learning rate scheduling to enhance parameter
convergence and model stability during training. By continuously analyzing
the discrepancies between the rendered outputs and real inputs, the sys-
tem iteratively adjusts the synthesis to create more accurate and realistic
models.

This structured approach, as illustrated in the architectural overview Fig-
ure 3.1, ensures a streamlined and effective workflow from data handling
to the final realistic rendering of models. Subsequent sections will delve
deeper into each phase, outlining their specific roles and the technical
specifics underlying their operations.

3.2 Face Detection and Bounding Box Extraction

The Single Shot Scale-invariant Face Detector (S³FD) [62], a CNN, ex-
cels in detecting faces under varied conditions and scales, leveraging its
architecture that incorporates multiple detection layers tailored for scale
invariance. The initialization of S³FD with pre-trained weights from the
Large-scale 3D Face Dataset (LS3D-W Balanced) [63] is essential for
achieving accurate results across diverse face images, characterized by
different poses and lighting conditions. This dataset is crucial for adapting
the model to real-world variability in facial recognition tasks. To standardize
inputs and enhance detection reliability, the image I undergoes normaliz-
ation by subtracting a mean vector µ = [104, 117, 123]T. S³FD processes
the normalized image at multiple scales, identifying potential face regions,
each defined by a bounding box and a corresponding confidence score.
The set of detected bounding boxes B is represented as:

B = {bi = (xmin,i, ymin,i, xmax,i, ymax,i, ci)|ci > τ, i = 1, 2, . . . , n} (3.1)
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Here, bi delineates the bounding box coordinates, ci represents the con-
fidence score, and τ is the threshold that filters out bounding boxes with
low confidence. Non-Maximum Suppression (NMS) [64] is then applied to
refine these detections by eliminating redundant detections. NMS reduces
overlaps and retains the most representative bounding box for each detec-
ted face based on a overlap threshold value. This extraction of bounding
boxes is paramount, as it ensures accurate localization of facial regions.

3.3 Facial Landmark Detection and Alignment

Following face detection and bounding box extraction, the next step is
the extraction of facial landmarks. This process involves pinpointing key
anatomical points on the face, such as eye corners, the tip of the nose,
and mouth edges. The Face Alignment Network (FAN) [63] is employed
for its exceptional accuracy and robustness under various conditions. This
CNN, renowned for its capability to capture spatial relationships between
facial features, utilizes a deep learning architecture trained on the LS3D-W
Balanced dataset, which includes diverse facial types and expressions.
Each face image Icrop,i identified by the bounding box is resized to a stand-
ard input size for FAN to ensure consistency. FAN incorporates several
stacked Hourglass networks [65], adept at detecting facial keypoints by pro-
cessing feature maps through sequential downsampling and upsampling,
producing a series of heatmaps Hi. Landmarks (xj, yj) are pinpointed by
locating the peak value in each heatmap. The coordinates extracted from
the heatmaps are refined to adjust for the scale changes due to resizing,
ensuring they match the original image dimensions. The landmarks are
outputted as L = {(x1, y1), (x2, y2), ..., (x68, y68)}, here L denotes the set
of coordinates for 68 detected landmarks, each representing a specific
facial feature. These landmarks are essential for aligning and adapting
3DMMs to the unique contours of an individual’s face, as they guide the
reconstruction process.

3.4 Facial Segmentation for Detailed Texture Mapping

Following the detection of facial landmarks, the subsequent stage in our
3D facial model involves facial segmentation. The Bilateral Segmentation
Network (BiSeNet) [66] architecture features a dual-path design, combining
a spatial path that preserves high-resolution details and a context path
that captures expansive contextual information. This structure facilitates
the efficient processing of both detailed spatial and contextual data, en-
suring accurate segmentation of complex facial features. BiSeNet, when
trained on the CelebAMask-HQ [67] dataset which consists of high-quality
images with detailed facial region annotations, has demonstrated robust
performance across diverse imaging conditions. For an input image I,
BiSeNet produces a segmentation map S, where each pixel is assigned a
label denoting specific facial regions such as the eyes, nose, and mouth.
Segmented facial regions are essential for applying texture maps and fit-
ting morphable models with high precision to the contours of the face.
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This segmentation ensures that textures and lighting effects are precisely
aligned, thereby enhancing the realism of the 3D output. The efficacy
of segmentation directly impacts the fidelity of the 3D model, facilitating
targeted modifications and enhancements that are vital for authentically
rendering facial expressions and characteristics.

3.5 3D Face Model

The FLAME model (Face Landmark-based Articulated Morphable Model)
[24] is a computational framework in our pipeline that allows for detailed
reconstruction of human faces from images. It parameterizes shape, expres-
sion, and pose variations, enabling nuanced control over facial dynamics for
realistic adaptations. The model functions through a differentiable scheme
that produces a 3D mesh and corresponding facial landmarks, supporting
diverse facial geometries and dynamics by manipulating input parameters
grouped as follows:

Shape Parameters (βs ∈ R100) control the baseline facial structure. These
are the coefficients that, when multiplied by a shape basis matrix S ∈
R3N×100, produce the shape deformation:

Bshape(βs) = S · βs (3.2)

Expression Parameters (βe ∈ R50) adjust the mesh to reflect specific
facial expressions like smiling or frowning. Similar to shape parameters,
expression parameters are coefficients for an expression basis matrix
E ∈ R3N×50:

Bexp(βe) = E · βe (3.3)

Pose Parameters (θ ∈ R6) steer head orientation, accommodating rota-
tions and translations. Pose deformations utilize a skinning method with
joint-based rotations, described as follows:

Bpose(θ) = W(Dpose(θ), J) (3.4)

Here, W is the blend skinning function, Dpose is the pose-dependent de-
formation, and J ∈ RK×3 is the joint regressor matrix for K skeletal joints.

The vertex positions of the face mesh V are computed by combining these
deformations with a neutral face template:

V(βs, βe, θ) = Vtemplate + Bshape(βs) + Bexp(βe) + Bpose(θ) (3.5)

Here, Vtemplate ∈ R3N is the neutral face vertex template, where N is the
number of vertices in the mesh. Deformations due to shape and expression
are linear combinations of basis shapes from S and E, controlled by Eqs. 3.2
and 3.3 respectively.

Finally, the model computes facial landmarks by selecting specific vertex
indices:

L = Vlandmarks (3.6)
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where Vlandmarks are the vertex positions corresponding to predefined
landmark indices on the mesh. This allows landmarks to adapt dynamically
to expressions and poses, ensuring accurate alignment and representation
across various conditions.

Dynamic memory allocation and hardware acceleration enhance processing
efficiency by enabling multiple instances to run concurrently. Parameter ini-
tialization sets all parameters—shape (βs ∈ R100), expression (βe ∈ R50),
and pose (θ ∈ R6)—to zero vectors to begin from a neutral baseline,
allowing unbiased parameter exploration during optimization.

The integration of detailed parametrization and dynamic control makes
FLAME a robust tool for synthesizing realistic 3D facial models, and being
an integral part of the Analysis-by-Synthesis approach.

3.6 Texture Model

Building on the detailed facial geometry provided by the FLAME model,
the FLAMETex model extends these capabilities to include high-fidelity
texture mapping, necessary for achieving photorealistic 3D reconstructions.
The integration of texture not only enhances visual realism but also plays
a pivotal role in accurate skin tone representation under varied lighting
conditions. FLAMETex utilizes the Balanced Albedo (BalancedAlb) TRUST
(Towards Racially Unbiased Skin Tone Estimation) texture model, chosen
for its focus on eliminating racial biases in skin tone estimation. This
advancement is significant for ensuring fair representation across diverse
racial backgrounds, a critical aspect often overlooked in traditional texture
models. Texture in FLAME is manipulated through parameters derived
from a texture space constructed from a comprehensive dataset. This
setup ensures broad generalizability across different ethnicities. Texture
parameters (τ) define the skin’s coloration and details as:

T(τ) = µt +
N

∑
i=1

τiϕi (3.7)

Here, µt ∈ R3×512×512 represents the mean texture, ϕi ∈ R3×512×512

the principal texture components, N (= 50) the number of components
utilized, adjustable based on fidelity and resources, and τi ∈ R50 are the
texture coefficients. The texture coefficients are initially set to zero. This
initialization reflects starting from the mean texture, which serves as a
neutral baseline. Adjustments to these coefficients during model fitting
enable the texture to be personalized to match specific facial features more
accurately. The output of this is albedo UV map of 512 × 512 × 3 pixels.

We use the BalancedAlb TRUST model in the FLAMETex framework in the
hopes that it will reduce racial bias in our facial reconstruction pipeline. Be-
ing the most diverse existing model, BalancedAlb, combined with RENI++,
ensures accurate and equitable skin tone representation across all racial
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groups by incorporating scene disambiguation and a balanced training
dataset. This approach not only enhances the visual quality of the models
but also promotes fairness and inclusivity in automated systems.

3.7 Camera Model

Following the integration of texture mapping through the FLAMETex model,
the next step in our pipeline involves the use of orthographic projection for
aligning and scaling the 3D facial models. This projection is applied to sim-
plify the rendering of 3D facial models by neglecting depth information, thus
ensuring consistent scale across the image. Unlike perspective projection,
orthographic projection does not converge lines, simplifying the calculations
and ensuring a consistent scale across the image. In the context of our
modeling, camera parameters are structured to support the transformation
of 3D vertices and landmarks effectively: Scale (s) adjusts the model’s size
within the viewing frame, ensuring preservation of aspect ratio irrespective
of original dimensions. Translation (tx, ty) moves the model within the 2D
plane, positioning the face appropriately within the frame irrespective of
pose.

X′ = s · (Xproj + T) (3.8) X′′
y, z = −X′

y, z (3.9)

The camera transformation is encapsulated as c =
[
s tx ty

]T. where
each component captures the relative position and scale of the 3D model
with respect to the camera. The transformation from 3D points to their
2D orthographic projection is given by Eq. 3.8, where Xproj is the x and y
coordinates matrix after projection, and T is the translation vector [tx, ty],
and s is the scale factor. Depth information is retained in the z-coordinate for
rendering depth-dependent effects. This transformation is uniformly applied
to both vertex coordinates and facial landmarks from the FLAME model,
ensuring consistency in alignment and scaling. Additionally, a reflection
transformation adjusts the y and z coordinates post-projection, see Eq. 3.9.
This step aligns the model with typical image or scene coordinates, where
the y-coordinate increases downwards, essential for correct orientation
in Rasterisation process. These techniques guarantee that the spatial
dimensions, orientation, and scaling of the 3D facial models are precisely
controlled, enhancing both their utility and fidelity for further processing or
visualization.

3.8 Illumination Model

Following the alignment and scaling achieved through projection, the next
step in our 3D facial reconstruction pipeline involves the integration of ad-
vanced neural illumination techniques using RENI++ (Rotation-Equivariant
Neural Illumination) model. This extension of the foundational RENI model
is tailored for dynamic lighting and intricate light interactions that are charac-
teristic of in-the-wild scenarios, enhancing the photorealism and accuracy
of our 3D reconstructions.
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In computer graphics, a Lambertian surface refers to an idealized diffuse
surface that reflects light uniformly in all directions, resulting in a matte
appearance. However, human skin and many real-world materials exhibit
non-Lambertian properties, where light reflection varies with viewing and
lighting angles, leading to more complex visual effects. RENI++ consists of
a sophisticated Transformer-decoder architecture to generate nuanced en-
vironmental lighting effects, crucial for realistic rendering of non-Lambertian
surfaces like human skin. It operates on a rotation-equivariant neural field,
maintaining consistent illumination effects across different orientations and
ensuring detailed rendering of high-frequency textures.

The interaction between light and the 3D surface is modeled as:

I(x) =
∫

ω
L(ω, x) · ρ(ω, x, v) dω (3.10)

Here, I(x) represents the light intensity at a surface point x, calculated by
integrating light contributions from all directions. L(ω, x) indicates the light
arriving at x from direction ω, reflecting the effects of various light sources
and environmental interactions. ρ(ω, x, v) is the Bidirectional Reflectance
Distribution Function (BRDF), describing how light is reflected based on its
incident direction ω, surface point x, and the viewer’s perspective v. The
integral over ω sums up these effects from all possible directions, ensuring
comprehensive consideration of both direct and indirect lighting.

Within our pipeline, RENI++ is configured with specific environmental map
widths and ray sampling numbers to adaptively adjust the lighting based on
scene specifics. The model consists of two main parameter vectors: Latent
Space Representation (z ∈ R100×3): Encapsulates complex lighting vari-
ations. Scale Parameter (s ∈ R): Modulates the intensity and distribution
of predicted illumination. These dynamically modulate the light intensity
and distribution, allowing for real-time adaptation to changing lighting con-
ditions. The output I from RENI++ translates rotation, latent illumination
codes, and scale into a coherent illumination map.

Integration of RENI++ within the 3DMM ensures dynamic rendering ad-
justments in real-time to variable lighting conditions, crucial for inverse
rendering tasks where realistic lighting reconstruction is paramount. This
holistic approach advances our capability to render realistic human faces
under diverse lighting conditions, pushing the boundaries of photorealistic
rendering and lighting simulation in dynamic environments.
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3.9 Rasterization and Rendering

The final stage in our 3DMM pipeline involves rasterizing and rendering
the 3D face model to produce a photorealistic 2D image. This process
entails converting geometric data into pixel representations, integrating tex-
ture, and applying lighting effects to achieve photorealistic reconstructions.
Rasterization involves several critical steps, each governed by precise
mathematical operations: Vertex Transformation: Eq. 3.11 is used to
transform the vertex coordinates v from world space into normalized device
coordinates (NDC) for rendering on a 2D screen. The view matrix Mview
adjusts coordinates from world space to the camera’s perspective, and the
projection matrix Mproj maps these 3D coordinates into the 2D coordinate
system of the screen. Triangle Setup and Edge Function Evaluation:
Eq. 3.12 determines whether a pixel at coordinates x, y is inside a triangle.
The coefficients a, b, c are calculated based on the triangle’s vertices, and
the sign of f (x, y) indicates if the pixel is within the triangle’s boundaries.
Z-Buffering (Depth Buffering): Eq. 3.15 updates the depth buffer to main-
tain the correct visibility of surfaces. It compares the current depth z at a
pixel location with the existing value in the buffer and retains the minimum
value, ensuring that closer objects occlude those farther away. Attribute
Interpolation: Eq. 3.13 is used for interpolating vertex attributes (like nor-
mals and UV coordinates) at pixel p using the barycentric coordinates
w1, w2, w3 of the triangle. It effectively blends the attributes of the triangle’s
vertices based on their proximity to the pixel, where ai are vertex attributes,
and ap is the interpolated attribute at pixel p.

v′ = MprojMviewv (3.11) f (x, y) = a · x + b · y + c (3.12)

ap =
w1a1 + w2a2 + w3a3

w1 + w2 + w3
(3.13) Ip = ρ

n

∑
i=1

(li · np)Li (3.14)

zbuffer[x, y] = min(zbuffer[x, y], z) (3.15)

Cp = Tp ⊙ Ip (3.16)

Each fragment generated contains interpolated values that are passed
to the shading stage for further processing: Lambertian Reflectance:
Eq. 3.14 calculates the light intensity at pixel p using the Lambertian model,
which is ideal for simulating diffuse reflections. It incorporates the cosine
of the angle between each light source’s direction li and the normal at the
pixel np, multiplied by the light’s intensity Li and the surface albedo ρ. Final
Image Composition: This final Eq. 3.16 combines the texture color Tp and
the computed shading intensity Ip at each pixel p to produce the final color
Cp. It uses element-wise multiplication to modulate the texture with the
shading, reflecting realistic interactions between the material properties and
lighting. This rigorous approach ensures that our 3D facial reconstructions
are not only geometrically accurate but also exhibit high visual fidelity. By
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managing the intricate interplay between geometry, texture, and lighting, the
pipeline achieves a realistic rendering of 3D facial models, closely mimicking
the complexities of human features under diverse lighting conditions.

3.10 Regularization and Loss Functions

Defining sensible regularization and loss functions is essential to achieve
realistic and accurate reconstructions. Regularization helps in maintaining
the generalizability of the model across diverse facial images and prevents
overfitting, while specific loss functions guide the fitting process towards
realistic outcomes. In particular, regularization and landmark-loss are
crucial to resolve ambiguities and constrain an otherwise very ambiguous
and hard-to-solve problem.

Regularization Techniques: Shape Regularization ( 3.17) prevents signi-
ficant deviations in shape parameters by controlling deviation from neutral
face shapes, with βs as shape coefficients. Expression Regularization
( 3.18) maintains realistic expressions by moderating deformations and
regulating βe, the expression coefficients. Pose Regularization ( 3.19) en-
sures natural head orientations; θ are the pose parameters. Latent Codes
Regularization ( 3.20) smooths rapid changes in lighting and texture, with z
as latent illumination codes.

Lshape =
1
2 ∑ β2

s (3.17) Lexpr =
1
2 ∑ β2

e (3.18)

Lpose =
1
2 ∑ θ2 (3.19) Llatent = E[∥z∥2] (3.20)

Llandmark =
1
N

N

∑
i=1

√√√√ 2

∑
j=1

(lij − gij)2 (3.21)

smoothL1(x, y) =

{
0.5(x − y)2 if |x − y|< 1
|x − y|−0.5 otherwise

(3.22)

Lphoto = smoothL1(M ⊙ Ipred, M ⊙ Itrue) (3.23)

Loss Functions: Landmark Loss ( 3.21) ensures accurate positioning of
facial features by aligning 3D model with 2D facial landmarks. It measures
Euclidean distance between predicted landmarks lij and ground truth gij.
Photometric Texture Loss ( 3.23) matches the texture of the reconstructed
face to the observed image, using a robust Smooth L1 loss ( 3.22) to handle
occlusions and pixel anomalies effectively. These techniques ensure that
the fitting process optimizes a balance between fidelity and generalizability,
achieving realistic and plausible outputs under diverse conditions.
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3 Method

The overall loss function is defined as:

(3.24)L = Lphoto · ωphoto + Llandmark · ωlandmark + Lshape · ωshape
+ Lexpr · ωexpr + Lpose · ωpose + Llatent · ωlatent

3.11 Adaptive Learning Rate Scheduling

Adaptive learning rate scheduling is pivotal for optimizing the 3D face
reconstruction model, enhancing convergence and output quality by fine-
tuning the learning rates across various model parameters:

Parameter Groupings and Rates: Geometric Parameters: Ldefault
r = η is

for shape, expression, pose, and camera settings. Texture Parameters:
Ltex

r = ηalbedo is specifically for albedo adjustments. Latent Illumination
Codes: Llatent

r = ηlatent targets lighting and shading effects.

θt+1 = θt −
ηt√

v̂t + ϵ
m̂t (3.25) LRi(t) = LRi,initial · γi(t) (3.26)

The Adam optimizer is utilized for its adaptive moment estimation, crucial
for handling large datasets and varied parameter spaces as described by
Eq. 3.25 where θt are parameters at timestep t, ηt, m̂t, and v̂t are learning
rate, and bias-corrected first and second moment estimates, respectively, ϵ
is added for numerical stability.

The optimization process is structured into distinct phases: Rigid Fitting
Phase: Initial alignment using rigid transformations. Non-rigid Fitting
Phase: Detailed adjustments to expressions and subtle shape refine-
ments. Learning rates are dynamically adjusted during these phases using
Eq. 3.26. where LRi(t) is the learning rate for parameter group i at iter-
ation t, and γi(t) is a scaling factor derived from the current phase. A
custom scheduler manages the transition between phases based on pre-
defined criteria, ensuring optimal learning conditions throughout the training
process.

Each iteration involves: 1. Gradient calculation via backpropagation. 2.
Parameter updates using the current learning rates provided by Adam. 3.
Learning rate adjustments by the scheduler, reflective of progress in the
fitting phases. This approach ensures that the model efficiently adapts
to the complexities of the optimization landscape, resulting in high-quality,
realistic 3D facial reconstructions. By intelligently managing learning rates
and phases, the system expertly balances exploration and exploitation,
leading to effective convergence tailored to the unique dynamics of each
parameter set.
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4 Evaluation

We compare our model qualitatively and quantitatively with several state-
of-the-art (SOTA) methods. MGCNet [68], Deng et al. [69], INORig [70]
and DECA [10] use the Basel Face Model (BFM) [71] for albedo estimation;
TRUST use the BalancedAlb [58] model; GANFIT [30] uses its own GAN-
based appearance model; and CEST [72] is a model-free approach. We
conducted analysis using a system equipped with 32 GB of RAM, an
NVIDIA GeForce RTX 2070 GPU, and a Ryzen 5 3600X CPU. The software
environment included PyTorch 1.10.0, PyTorch3D 0.7.1, and CUDA 12.4.

4.1 Quantitative Analysis

The FAIR benchmark [58] for evaluating the accuracy of albedo estimation
on skin color adopts the ITA as an objective metric because of its objectivity,
ease of computation from images, and significant correlation with skin
pigmentation. See Appx. A to know more about ITA.

The benchmark evaluates the following metrics: ITA Error: The mean
error in ITA degrees between the predicted albedo UV and the ground-truth
albedo UV, calculated over the skin region. Bias Score: The standard
deviation of the per skin group ITA errors, quantifying bias by showing the
variability in performance across different skin groups. Total Score: The
sum of the ITA error and the bias score, providing an overall performance
measure. To facilitate future evaluations using this benchmark, Feng et al.
[58] released their validation set constructed using 206 high-quality 3D head
scans. It contains synthesized images, cropped images for each head, pre-
masked ground-truth albedo UV maps, and ground-truth coordinates of the
68 landmarks. This comprehensive dataset enables robust benchmarking
and comparison across different albedo estimation methods. See Appx. B
for example images of the dataset and Appx. C for our performance on it.

The comparative analysis of different albedo estimation methods, as de-
tailed in Table 4.1, reveals nuanced insights into the performance of our
model relative to established benchmarks. Our model demonstrates strong
performance across lighter and tanner skin types (I-IV), though it exhibits a
modest decrease in accuracy for darker skin types (V-VI). The bias score
of 7.36 for our model signifies a balanced performance across various skin
types, significantly lower than that of other methods like GANFIT [30] (29.04)
and DECA [10] (26.69). It is also worth noting that Da’Prato-Shepard et al.
[61] utilized RENI as their illumination model with an optimization-based
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Method Avg. ITA Bias Score ITA per skin type
↓ ↓ ↓ I II III IV V VI

Deng et al. [69] 22.57 22.31 44.89 8.92 9.08 8.15 10.90 28.48 69.90
GANFIT [30] 62.29 29.04 91.34 94.80 87.83 76.25 65.05 38.24 11.59
MGCNet [68] 21.41 16.04 37.46 19.98 12.76 8.53 9.21 22.66 55.34
DECA [10] 28.74 26.69 55.43 9.34 11.66 11.58 16.69 39.10 84.06
INORig [70] 27.68 25.73 53.40 23.25 11.88 4.86 9.75 35.78 80.54
CEST [72] 35.18 11.08 46.26 50.98 38.77 29.22 23.62 21.92 46.57

TRUST (BFM [71]) 16.19 13.99 30.18 12.44 6.48 5.69 9.47 16.67 46.37
TRUST (AlbedoMM [33]) 17.72 13.95 31.67 15.50 10.48 8.42 7.86 15.96 48.11
TRUST (BalancedAlb) 13.87 2.55 16.43 11.90 11.87 11.20 13.92 16.15 18.21

Da’Prato-Shepard et al. [61] 29.21 9.48 38.69 36.40 35.62 28.37 36.70 20.20 11.45
Ours 26.53 7.36 33.89 21.94 18.87 20.11 25.65 33.79 38.81

Table 4.1: Comparison to state-of-the-art methods on the FAIR benchmark
[58]. Excluding TRUST [58], our model excels in minimizing bias and ITA error, as
well as accurate skin colour predictions.

fitting approach similar to ours. However, our iterative model, RENI++,
achieved better results, highlighting significant improvements in accuracy
and bias reduction over the baseline RENI model. This demonstrates the
effectiveness of our refinements in handling complex illumination conditions.

Notably, the TRUST (BalancedAlb) [58] method exhibits the best overall
performance in the benchmark, achieving an ITA of 13.87 and a bias
score of just 2.55. This model employs a sophisticated approach involving
the prediction of global illumination and segment-specific facial analysis,
which likely contributes to its superior performance. The comparatively
higher bias score of our model suggests a need for incorporating similar
techniques to enhance our handling of scene variability and illumination
conditions, potentially elevating our performance to match or exceed that of
TRUST (BalancedAlb) [58]. We will explore the similar idea in the following
section. When excluding TRUST [58] from the comparison, to ensure
a more equitable assessment among models that analyze facial images
without the influence of advanced environmental pre-processing, our model
excels. It outperforms others in terms of bias score, reflecting a robust
capability to manage diversity across different skin types with minimal
disparity. Our method not only excels in reducing bias but also maintains
competitive accuracy across various skin types. This dual achievement
underscores the exceptional performance of our model, illustrating its
potential as a fair and effective tool.

4.2 Qualitative Evaluation

To evaluate our method qualitatively, we conducted visual comparisons
with various SOTA methods. These comparisons were essential in high-
lighting differences in both the geometric accuracy of facial reconstructions
and the fidelity of skin tone representations. Shading mainly affects local
geometry, whereas skin tone, a global property of albedo, presents distinct
challenges. Accurately estimating shape does not ensure precise skin tone
representation, and vice versa. For example, while DECA [10] excels in
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Figure 4.1: Comparing recent face reconstruction methods on synthesised
facial images from TRUST benchmark. From left to right: the input image,
GANFIT [30], INORig [70], MGCNet [68], Deng et al. [69], CEST [72], DECA [10],
TRUST [58], the ground-truth albedo rendering and in the end, our method.

shape reconstruction, it often struggles to capture accurate skin tones due
to the constraints imposed by albedo regularization.

In our observations, methods such as GANFIT [30], INORig [70], and DECA
[10] tend to produce albedo maps with limited variety. These methods show
low ITA error values for certain skin types but exhibit high ITA error values for
others, indicating a notable bias toward specific skin tones. The model-free
approach adopted by CEST [72], while ambitious, often fails to disentangle
lighting effects from albedo accurately, resulting in albedo maps that carry
significant remnants of lighting conditions, thereby compromising skin tone
accuracy. MGCNet [68] and, to a lesser extent, Deng et al. [69] manage to
generate more diverse albedo outputs. However, given that the BFM [71]
lacks dark skin tones in its training dataset, representations of these skin
tones rely heavily on extrapolation. This extrapolation tends to introduce
noise and diminishes accuracy, particularly for darker skin tones.

Our model distinguishes itself by striking an optimal balance between geo-
metric precision and skin tone fidelity. It achieves this by ranking second
only to the TRUST [58] model in terms of albedo accuracy, producing
consistent and realistic skin tones across a broad range of conditions.
Moreover, our method showcases geometric accuracy comparable to that
of DECA [10], ensuring that facial reconstructions are both detailed and
accurate. Further demonstrating the robustness of our method, we applied
it to images of the same subjects taken under various lighting conditions
and against differing backgrounds. As illustrated in Figure 4.2, the estim-
ated albedo for each subject remains consistent across these changes,
affirming that our method not only captures but also faithfully reproduces
skin tones accurately and robustly, irrespective of external lighting or back-
ground variations. Although there is a subtle change in albedo under indoor
lighting conditions, which we will explore in subsequent sections, but the
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reconstructed facial shape remains remarkably consistent.

(a) (b) (c)

Figure 4.2: (a) Qualitative comparisons on real world images. From left to right:
the input image, INORig [70], MGCNet [68], DECA [10], TRUST [58], and our
method. (b) & (c) Given synthesised facial images from FAIR benchmark [58]
under varying lighting (indoor and outdoor), our model (2nd row) and TRUST (3rd
row) outputs similar albedo and face shape.

4.3 Effect of Illumination Conditions

The FAIR benchmark [58] encompasses a diverse array of lighting scen-
arios, spanning both natural and artificial conditions. But our illumination
model, RENI++ [56], was specifically trained with a focus on outdoor natural
lighting conditions. Based on this training specialization, we anticipated
superior performance in outdoor settings compared to indoor environments,
which typically feature artificial lighting. This hypothesis was substantiated
through a detailed analysis of the benchmark data, which we manually
categorized into outdoor and indoor classes based on the predominant
lighting conditions. The dataset had 45.3% outdoor and 54.7% indoor scen-
arios, and our findings revealed a significant 49.3% decrease in the bias
score (std) from indoor to outdoor scenarios. This marked discrepancy
underscores the sensitivity of our model to changes in lighting conditions
and highlights a critical area for future optimization.

4.4 Ablation Study

Method Avg. ITA Bias Score ITA per skin type
↓ ↓ ↓ I II III IV V VI

BFM [71] & SH [49] 30.81 27.78 58.58 9.62 6.41 12.50 20.42 54.10 81.79
BalancedAlb [58] & SH [49] 17.02 8.48 25.50 5.49 10.36 17.07 22.17 15.05 31.98

BalancedAlb [58] & RENI++ [56] 26.53 7.36 33.89 21.94 18.87 20.11 25.65 33.79 38.81

Table 4.2: Comparison of different iteration of our model, to verify the contri-
bution of different enhancement to the overall performance.

An ablation study is pivotal for elucidating the influence of various compon-
ents and configurations within our model. It delineates the enhancements
achieved through successive iterations of the model development process,
facilitating a deep understanding of each element’s contribution to the
overall performance. In this study, we evaluated three configurations, as
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detailed in Table 4.2 & Appx. D: the baseline model utilizing the BFM [71]
with SH, an intermediate model that integrates BalancedAlb model [58]
while retaining SH, and our final model which combines BalancedAlb with
RENI++ [56].

BFM & SH: This configuration, serving as our baseline, exhibits a high
bias score of 27.78 , indicating significant variability in performance across
different skin types. It particularly struggles with darker skin tones, as
evidenced by elevated ITA errors for Types V and VI. The shortcomings in
handling diverse albedos highlight the limitations of the BFM when used
without modifications tailored to enhance albedo balance. BalancedAlb
& SH: By incorporating BalancedAlb, this model configuration achieves
a notable reduction in bias score to 8.48. This adjustment yields more
consistent performance across skin types, with marked improvements
particularly for darker skin tones (Type V: 15.05, Type VI: 31.98). The
introduction of BalancedAlb plays a crucial role in moderating the bias
inherent in the baseline model, thereby improving fairness and accuracy in
albedo estimation. BalancedAlb & RENI++: Our final model configuration,
which includes RENI++ in addition to BalancedAlb, further lowers the bias
score to 7.36. This demonstrates the efficacy of RENI++ in enhancing
model stability and consistency across a diverse range of skin types. It’s
worth noticing that integration of RENI++ caused a spike in avg. ITA error.
The major reason behind this could be due to us limiting the resolution of
the environment map to 32 × 64 pixels because of high resource demands
of our experiments. The limited resolution may have led to a loss of
detail and accuracy in capturing the nuances of outdoor lighting, thereby
increasing the ITA error in these scenarios. Additionally, since RENI++ was
not optimized for indoor lighting, the error increased further.

In our study, we identified a "baked-in" illumination effect when evaluating
indoor lighting conditions, as illustrated in Figure 4.2. This issue arose
due to our initial optimization strategy, which optimized albedo for only 250
iterations before adjusting for illumination. This approach was intended to
anchor the optimization process with a texture that approximates actual
skin color, aiming to capture a more naturalistic appearance from the outset.
However, this method proved less effective under the simpler and more
uniform indoor lighting, inadvertently causing some lighting features to be
embedded directly into the albedo. This was particularly noticeable around
specular highlights, where illuminated regions distorted the skin tone estim-
ation. This preliminary strategy also influenced our benchmark evaluation,
particularly affecting the ITA error metrics under indoor scenarios and for
darker skin tone. In response, we are considering enhanced normalization
techniques during the albedo-only optimization phase to prevent albedo
from capturing transient lighting effects. By refining our approach to better
balance the albedo and illumination components from the initial stages
of model training, we aim to mitigate the baked-in effect and improve the
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(a) (b)

(c) (d)

Figure 4.3: Environment maps generated by RENI++ under different pre-
processing conditions: (a) Manual face removal, yielding the most accurate
background illumination cues. (b) Masking faces using RENI++’s inbuilt feature,
introducing some deviations. (c) Raw, unprocessed image, resulting in visible
albedo imprints and the least accurate environment map. (d) Original scene image
for comparison.

model’s accuracy and consistency across diverse lighting conditions. This
ablation study not only confirms the validity of our incremental improve-
ments but also sets a clear path for future enhancements to bolster the
model’s performance even further.

4.5 Investigating RENI++ and Scene Disambiguation

Scene disambiguation involves the process of accurately interpreting and
separating different elements within a scene to understand the context
and relationships among them. Our current method for estimating scene
illumination relies solely on the face region. During the fitting process, the
environment map is integrated as an illumination model by the renderer.
The optimization is performed on the face crop region, where the RENI++
[56] parameters are adjusted to generate an environment map, which is
then used to render the scene illumination onto the face. However, it is
intuitive that there is a significant amount of illumination information present
in the background of the image, which our current approach overlooks.
FLAME [24], utilizes both global scenic and local facial information in a
two-step process to estimate illumination. In contrast, our method has so far
only employed the local facial information. To investigate how incorporating
the background information could improve our model, we conducted a
series of tests.

Instead of providing RENI++, with only a cropped facial image, we used
whole scene images from the benchmark dataset, as shown in Figure 4.3.
We preprocessed these images in three different ways: (a): In this scenario,
we manually removed faces from the scene, allowing the model to focus
solely on the background illumination cues. This approach yielded the most
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(a)

(b)

Figure 4.4: Demonstrating the versatile application of our model in dynamic
and realistic 3D facial rendering. (a) From left to right: an input image, re-
constructed render, environment map for relighting, and three novel viewpoints
of the face with applied illumination. (b) Shows an input image on the left, and
reconstructed render, followed by modification and animation of facial expressions.

accurate environment map generation, as it eliminated any direct influence
from the facial regions. (b): We utilized RENI++’s inbuilt mask feature to
obscure the facial area. Although this method was effective, it introduced a
degree of randomness. The model’s attempts to inpaint the masked region
resulted in deviations from accurate environmental cues. (c): Providing
the model with the raw, unprocessed image resulted in the least favorable
outcome. The direct inclusion of faces led to visible albedo imprints in the
environment map, demonstrating the significant impact facial features have
on the model’s ability to accurately generalize the lighting conditions.

Our findings suggest that future work should incorporate background in-
formation to estimate the RENI coefficients and environment map more
accurately. The manual face removal process could be automated using
techniques such as Stable Diffusion Inpainting [73], thereby improving
efficiency and consistency in preprocessing the images.

4.6 Applications

Our method aims to create a versatile model with broad applications across
various industries. We conducted experiments to showcase the model’s
capabilities in realistic 3D facial rendering (Figure 4.4). In the first experi-
ment (a), we reconstructed 3D faces from 2D images and re-rendered them
under various lighting conditions, demonstrating its use in film, video games,
and virtual reality. We also manipulated poses and camera settings to show
its flexibility in generating realistic renderings from multiple viewpoints. The
second experiment (b) highlighted the model’s ability to modify and animate
facial expressions and texture, covering diverse skin tones, beneficial for
animation, digital marketing, and social media. These experiments demon-
strate the model’s technical proficiency and its potential to transform digital
facial interactions across media and communication platforms, enabling
innovative applications and enhancing user experiences.
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5 Conclusion and Further Work

This project successfully addresses racial bias in 3D face reconstruction by
integrating a learned illumination prior independent of face models. This
approach significantly improves accuracy and fairness across various skin
tones, outperforming traditional 3D Morphable Models (3DMMs). The Bal-
ancedAlb TRUST model enhances albedo estimation, resulting in precise
and unbiased reconstructions. Our model shows competitive performance
in diverse lighting conditions and facial expressions, marking a substantial
step towards fairer and more accurate 3D facial reconstruction technologies.
This project underscores the potential for more inclusive and equitable ap-
plications in facial recognition, virtual reality, and digital media by leveraging
advanced machine learning techniques.

Building on the successes of this project, several avenues for future re-
search and development have been identified:

• Future work will focus on improving the model’s adaptability to indoor and
artificial lighting conditions. Current models show increased errors under
these scenarios, and targeted enhancements could further reduce these
inaccuracies.

• Continuing to address ethical considerations in the development and de-
ployment of 3D reconstruction technologies is paramount. This includes
ensuring equitable representation and application across all demograph-
ics, as well as ongoing monitoring and mitigation of potential biases.

• Further refining techniques for inverse rendering and scene disambigu-
ation to enhance the accuracy of environmental context interpretations.
This will improve the model’s performance in dynamically changing light
conditions and complex scenes.

• Future work should include re-running and evaluating the model without
the current resource constraints. This will allow us to fully explore and
realize the model’s true potential, and may even lead to further improve-
ments in accuracy and fairness.

By continuing to explore these areas, future advancements can build upon
the foundation laid by this project, striving towards the goal of creating fairer,
more accurate, and inclusive 3D facial reconstruction technologies.

30



A Individual typology angle

Figure A.1: Individual Typology Angle (ITA) classification of skin types. The ITA
is measured in degrees and categorizes skin from very light (ITA > 55°) to dark
(ITA < -30°). Each range of ITA values corresponds to a specific skin type, with
lower ITA values indicating darker skin phototypes. This figure illustrates the six
categories and their respective ITA ranges.
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B Evaluation Dataset Examples

In this chapter, we present a variety of examples from evaluation dataset.
This dataset is diverse, containing images that showcase different ethnicit-
ies, varying lighting conditions, both indoor and outdoor environments, and
even some complex shadow patterns.

FAIR [58] evaluation dataset comprises 234 data points. Each data point is
structured and includes the following components: Full Scene Image: This
is a complete image that includes three synthesized heads. The scene is
rendered with specific lighting conditions and background settings to mimic
realistic scenarios. Head Crops: Each of the three heads in the full scene
image is cropped and presented individually. This provides a closer view of
the head for detailed analysis. Ground-Truth Albedo UV Maps: These
are pre-masked albedo maps for each head, serving as the ground truth
for evaluating the texture and color information predicted by our model.
Ground-Truth Landmark Coordinates: For each head, a file containing
the ground-truth coordinates of 68 facial landmarks is provided. These
coordinates are crucial for assessing the accuracy of the facial geometry
predicted by any model.

To illustrate the dataset structure, each example below follows this layout:
First Row: The first row displays the complete raw scenic image. This
image includes the three synthesized heads with applied illumination and
background settings. Second Row: The second row presents the cropped
images of each head. These crops are extracted from the full scene image
and provide a detailed view of each head individually. Third Row: The
third row shows the ground-truth masked albedo UV maps for each head.
These maps are used as the reference for comparing the predicted albedo
from our model.

By providing these detailed examples, we aim to offer a clear understanding
of the dataset used for evaluation and the stringent standards against which
our model was compared.
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B Evaluation Dataset Examples

(a)

(b) (c) (d)

(e) (f) (g)

Figure B.1: The image captures an outdoor scene by a canal during the evening.
The three synthesized heads are illuminated by a street lamp, casting a warm light
on their faces, which adds to the realism of the scene. The ambient evening light
combined with the artificial street lamp creates a dynamic lighting condition, ideal
for evaluating the model’s performance in low-light and mixed lighting scenarios.
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(a)

(b) (c) (d)

(e) (f) (g)

Figure B.2: This example features an indoor scene in a car park at night. The
lighting is uniform and white, providing consistent illumination across the three
synthesized heads. This setting tests the model’s ability to handle uniform artificial
lighting, which is common in controlled indoor environments.
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(a)

(b) (c) (d)

(e) (f) (g)

Figure B.3: The scene takes place in a kitchen with extremely bright yellow light
illuminating the faces. This light could be natural sunlight or a result of high
camera exposure. The intense and warm lighting condition challenges the model
to accurately capture and reproduce the texture and color of the faces under high
exposure and vibrant lighting.
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(a)

(b) (c) (d)

(e) (f) (g)

Figure B.4: Set in a desert environment, this outdoor scene features cold color
tones with very uniform natural lighting on the faces. The consistent and even
natural light allows for the evaluation of the model’s performance in depicting faces
in a clear, daylight setting with minimal shadows or lighting variations, highlighting
the texture and details effectively.
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C Model Results

In this chapter, we present the detailed results obtained from our model on
the evaluation dataset. The structure of the presented results mirrors the
layout of our dataset examples to facilitate a clear and direct comparison.

For each example, the results are organized as follows: First Row: The
complete raw scenic image containing the three synthesized heads with
applied illumination and background. This row provides the original context
for the evaluation. Second Row: Cropped images of each head from the
full scene. These head crops allow for a closer inspection of the facial
details and model performance. Third Row: The ground-truth masked
albedo UV maps for each head. These serve as the reference for evalu-
ating the accuracy of our model’s albedo predictions. Fourth Row: The
model-predicted albedo UV maps. These maps are generated by our
model and are compared against the ground-truth albedo maps to assess
performance. Fifth Row: The rendered reconstructed images. These
images are synthesized based on the model’s predictions and provide a
visual representation of how well the model can recreate the original scene.
Sixth Row: The illumination maps inferred from the illumination cues on
the faces. These maps show the lighting conditions as interpreted by our
model. Each column in the results corresponds to one of the three faces in
the scene, allowing for an easy comparison across different heads within
the same scene.

One significant observation is the consistency of the inferred environment
map across all three heads in the same scene demonstrate the effective-
ness of our model in maintaining environmental coherence. This consist-
ency validates the robustness of our model in accurately synthesizing and
reconstructing scenes with multiple faces under varying conditions.

These results provide comprehensive insights into the performance of our
model, showcasing its ability to handle diverse lighting conditions and
accurately reproduce facial details and environmental contexts.
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C Model Results

(a)

(b) (c) (d)

(e) (f) (g)

(h) (i) (j)

(k) (l) (m)

(n) (o) (p)

Figure C.1: The scene captures an outdoor environment during dawn, featuring a
hilly backdrop. The three synthesized heads are uniformly illuminated by the early
sunlight. The ITA errors for the faces are as follows: 0.85, 2.83, 0.72. This setting
tests the model’s ability to handle natural, soft lighting conditions and maintain
consistency across multiple faces.
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(a)

(b) (c) (d)

(e) (f) (g)

(h) (i) (j)

(k) (l) (m)

(n) (o) (p)

Figure C.2: This example depicts an indoor scene, possibly in a railway station
or warehouse, illuminated by an overhead light tube. The lighting is artificial and
uniform. The ITA errors for the faces are: 0.95, 11.86, 9.83. This scenario chal-
lenges the model’s performance under consistent artificial lighting and highlights
its robustness in controlled indoor environments.
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(a)

(b) (c) (d)

(e) (f) (g)

(h) (i) (j)

(k) (l) (m)

(n) (o) (p)

Figure C.3: The image shows an outdoor scene in the afternoon, where a wall’s
shadow covers the faces, with some sunlight still hitting them. The contrast
between the shadowed and sunlit areas tests the model’s handling of complex
lighting conditions. The ITA errors for the faces are: 27.13, 10.09, 6.56. This
setting evaluates the model’s ability to manage sharp lighting contrasts and partial
occlusions.
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(a)

(b) (c) (d)

(e) (f) (g)

(h) (i) (j)

(k) (l) (m)

(n) (o) (p)

Figure C.4: This scene is set outdoors by a lake, with visible greenery in the
background and dim lighting suggesting sunset. The soft, fading light tests the
model’s performance in low-light conditions. The ITA errors for the faces are: 10.57,
10.21, 10.44. This example highlights the model’s capability to handle low-light
environments and maintain facial detail accuracy.
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D Model Comparison

In this chapter, we present a detailed comparison of our current model
with two previous iterations. This comparison is crucial for understanding
the improvements and enhancements achieved through successive model
developments.

We compare the following three models: BFM & Spherical Harmonics:
This model uses the Basel Face Model (BFM) combined with Spherical
Harmonics (SH) for illumination. BalancedAlb & Spherical Harmonics:
This intermediate model integrates the BalancedAlbedo (BalancedAlb)
technique with Spherical Harmonics. BalancedAlb & RENI++: Our current
model, which combines BalancedAlb with RENI++, representing the latest
advancements in our research.

For each comparison example, the results are organized in the following
rows: First Row: The input cropped image along with its true albedo UV
map. This serves as the ground truth for evaluating the model’s perform-
ance. Second Row: The predicted albedo UV maps generated by each
of the three models. This row illustrates how each model interprets and
estimates the albedo information from the input image. Third Row: The
rasterized albedo maps. These maps provide a visual representation of the
albedo as processed by the rasterization step, showing how each model
translates the predicted albedo UV maps into a final texture map. Fourth
Row: The rendered images with illumination. These images depict the
final output after applying the predicted illumination, offering a comprehens-
ive view of how each model reconstructs the face under varying lighting
conditions.

BFM & SH, baseline model demonstrates significant variability in perform-
ance, especially across different skin types. Incorporating BalancedAlb
reduces the bias score significantly, resulting in more consistent perform-
ance across diverse skin types. Our final model configuration further lowers
the bias score, showcasing the enhanced stability and consistency achieved
with RENI++.
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Figure D.1: True ITA: 20.48, Predicted ITA from left to right: 32.27 (BFM & SH),
52.82 (BalancedAlb & SH), and 32.07 (BalancedAlb & RENI++). The oldest model
and the current model have similar predictions, whereas the intermediate model
shows a significant deviation from the true ITA.
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Figure D.2: True ITA: -32.85, Predicted ITA from left to right: 25.50 (BFM & SH),
5.87 (BalancedAlb & SH), and -47.07 (BalancedAlb & RENI++). In this example,
the true ITA is negative, indicating darker skin tones. The oldest and intermediate
models show a positive bias, while the current model provides a more accurate
prediction, closely aligning with the true ITA.
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Figure D.3: True ITA: 31.61, Predicted ITA from left to right: 32.11 (BFM & SH),
24.85 (BalancedAlb & SH), and 30.79 (BalancedAlb & RENI++). This example
shows a true ITA with a close match to the predictions of both the oldest and
current models. The intermediate model, however, has a noticeable deviation.
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