
Autonomous Robotic Systems Engineering (AURO)
Y3886186

Abstract—This paper discusses the AURO coursework, which
leverages advanced sensors and ROS2 for improved autonomous
navigation and item retrieval. By focusing on safety, adaptability,
and a modular approach, its effectiveness is demonstrated in
a Gazebo experiments, highlighting its potential for real-world
applications in autonomous robotics and area for optimizations.
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I. DESIGN

The objective of this solution (Fig. 1) is to deploy a general-
ized autonomous mobile robot system capable of operating in
various interactive environments. Our approach requires min-
imal prior environment knowledge, relying only on essential
information, such as detail about the target items for collection.

A. System Breakdown
We address the problem by segmenting it into manageable

sub-problems, enhancing modularity and integration. Our cho-
sen platform, the Turtlebot3 Waffle-pi [1], is equipped with
an 8MP Camera, Enhanced 360° LiDAR [2], a 9-Axis Inertial
Measurement Unit, and precise encoders. These components
process sensor data or operate in unison, covering each other’s
operational limitations and enhancing system performance.

B. Robustness and Safety
The core of our solution emphasizes robustness and safety,

vital for transitioning from simulation to real-world applica-
tions. Even on prioritizing safety, we still emphasize factors
like item score optimization or multi-robot coordination.

1) Exploration Strategy: The robots employ minimal con-
textual information for navigation, mainly the characteristics
of the target items (e.g., balls of varying values and sizes).
The exploration strategy includes:

• Item Detection [3]: Using the camera for contour detec-
tion and triangulation to map item locations.

• Priority-Based Retrieval [4]: Items are prioritized based
on value, distance, size, and robot proximity, reducing
potential conflicts between robots and maximizing gains.

• Safety Mechanisms [5]: Two-tier safety management
involves dynamic velocity adjustments based on LiDAR
data and emergency stops for close-proximity obstacles.

• Traffic Light System [6]: A centralized system to prevent
collisions, assigning movement priority based on item
value or robot status and sharing location among robots.

2) Navigation and Localization: Post item retrieval, the
robot needs to reorient and return to the home zone efficiently:

• Mapping and Localization [2], [3]: An ongoing process
of updating an occupancy grid map using LiDAR and en-
hanced odometry data. Each robot contributes to a shared
global map for enhanced environmental awareness.

• Path Planning and Collision Avoidance [7]: Utilizing
the up-to-date map, the robot calculates the most efficient
return path. Local and global costmaps help in avoiding
both static and dynamic obstacles, including other robots.

• Item Avoidance [8]: Fusion of camera and LiDAR data
enables real-time detection and avoidance of other items
during the return journey. It compensates for individual
sensor limitations and ensures robust item detection.

• Behavioral Responses: The robot is equipped to handle
various contingencies with a range of responsive behavior
like docking procedures and recovery maneuvers.

C. Iterative Improvement

The design strategically incorporates randomness in explo-
ration patterns [9], ensuring non-deterministic behavior and
enhancing the system’s adaptability.

This iterative approach between exploration and navigation
ensures continuous improvement in the robot’s operational
efficiency. Emphasizing safety, adaptability and robustness,
our design lays the foundation for a versatile and efficient
autonomous item retrieval system.

Fig. 1: Autonomous Mobile Robot System Architecture Block Diagram
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II. IMPLEMENTATION

Fig. 2: Autonomy Diagram

In addressing the chal-
lenge, we adopted a modu-
lar approach [10], leverag-
ing ROS2’s capabilities for
efficient inter-module com-
munication. This disentan-
gle different nodes, pre-
dominantly in Python and
allow them to work in-
dependently by capitaliz-
ing on ROS2’s message-
passing, services, and ac-
tions(Fig. 2) [11].

A. Sensor and Processing

The primary node pro-
cesses camera images to
identify items using con-
tour detection. We then employed 3D reconstruction tech-
niques for spatial localization [12]. A novel feature, termed
’CamLiDAR’, fuses processed camera data with LiDAR read-
ings for enhanced environmental awareness. This fusion allows
for precise distance estimation and effective item tracking.

B. Coordination and Communication Among Robots

A centralized module orchestrates robot coordination [13].
It maintains a record of each robot’s location, integrating this
data for tasks like broadcasting coordinates w.r.t. the map,
managing a shared Point Cloud, and implementing a ’traffic
light’ system to prevent collisions based on status priorities.

C. Sensor Data Integration [8], [14]

The implementation features a ’Transformer’ node that har-
monizes data across different frames of reference, translating
sensor inputs into a unified base frame for coherent processing.
This approach ensures seamless integration of diverse sensor,
for decision-making essential for robust robotic navigation.

D. Behavioral State Machine

Fig. 3: Finite
State Man-
ager

Our state machine(Fig. 3) governs robot
behavior, ensuring responsive and autonomous
operation [15]. Key states include:

Halt: Activated by the traffic manager to
prevent collisions. Lethal: Engages when the
robot is too close to an object, prioritizing im-
mediate safety. Constraint: Limits the robot’s
movements to avoid nearby obstacles. Avoid-
ance: Adjusts the robot’s path dynamically in
response to obstacles. Autonomous: Repre-
sents full autonomy, powered by a behavior
tree for adaptability and reactivity

Each state is designed to respond to specific
environmental cues, ensuring safety and effi-
ciency and purely managed by a central state
manager, without internal transitions to avoid
GOTO analogy as considered harmful [16].

Fig. 4: Behavior Tree

E. Autonomous Operation Behavior Tree (BT)

The core of our autonomous decision-making is a BT, which
handles various operational scenarios such as Lethal Detec-
tion, Item Search and Retrieval, Navigation to Collection
Point, Item Grasping and Delivery and Home Navigation.

The BT structure offers flexibility and resilience, allowing
the robot to adapt to changing conditions effectively(Fig. 4).

F. Navigation 2 Stack Integration

Our implementation utilizes the Navigation 2 (Nav2) stack,
a versatile framework for autonomous robot navigation. It
integrates various tools for path planning, localization, and
obstacle avoidance based on different sensor data and well
tuned parameters [17]. The Nav2 stack incorporates:

BT Navigator Server: Manages navigation tasks, Map
Server and AMCL: Facilitates environment mapping and
localization, Planner and Controller Servers: Handle path
planning and motion control and Recovery Strategies: Ad-
dresses situations where the robot gets stuck.

This framework enables our robots to navigate complex
environments with precision and efficiency.

G. Custom ROS Messages and Launch File Configuration

Custom ROS message interfaces were created for specific
communication needs. Efficient system initialization is facil-
itated through a comprehensive launch file, which activates
various nodes for each robot, centralized traffic manager and
sensor nodes to help visualize internal states via RViz.

Through modular design, sophisticated sensor fusion, and
a robust state machine with an integrated behavior tree [18],
our implementation leverages the full capabilities of ROS2 and
Python. This approach ensures reliability, safety, and efficiency
in the autonomous operation of our mobile robot system.

III. ANALYSIS

Our comprehensive analysis utilizes simulations conducted
within a Gazebo environment integrated with ROS 2 Humble
Hawksbill, running on Ubuntu 22.04.3 LTS. We meticulously
logged detailed metrics such as different velocities and acceler-
ation, distance traveled, item spawn location, item interaction,
and robot localization. These metrics provided the foundation
for assessing the system’s efficiency, adaptability, and strategic
execution under varied operational scenarios.

A. Experimental Approach
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Fig. 5: Simulated Autonomy

In our simulation-
based assessment,
the autonomous
robotic system was
exposed to a variety
of scenarios to test
its performance
across item retrieval,
navigation, multi-
robot coordination,
and safety. Initial
experiments focused
on identifying
optimal parameters
for maximum
velocities and
sensor thresholds,
establishing a
performance
baseline [19]. This
baseline ensured safety without compromising task efficiency.
Subsequent sessions, extending over an hour, tested the
sustainability of the obstacle avoidance mechanisms and the
system’s resilience against operational fatigue. Each iteration
produced detailed metrics(Fig. 5 that allowed for an extensive
analysis of their capabilities and efficiency using Jupyter
Notebook as statistics, graphs, heatmaps and anomalies.

B. Data Presentation and Interpretation

1) Navigation Efficiency and Safety Mechanisms: Our anal-
ysis highlights the robots’ adeptness at dynamically adjusting
their paths in response to obstacles, showcasing the robustness
of our navigation and safety algorithms. For example, Robot 1
demonstrated an efficient strategy by maximizing item-value
score with minimal distance travelled (1.15 score per meter).

2) Multi-Robot Coordination: Spatial distribution and task
allocation data evidenced effective coordination between
robots. Despite occasional overlaps, robots maintained an
efficient division of the environment, optimizing the collective
item retrieval rate and preventing resource contention(Fig. 7.

3) Strategic Item Retrieval: The strategic prioritization of
high-value items was evident, with a clear preference for
blue items (82.6% contribution). This approach maximized
the score per retrieval and highlighted the system’s dynamic
assessment capabilities and strategic task prioritization.

4) Distance Traveled vs. Item Value: The correlation be-
tween the distance traveled and the item value collected
provided insights into the efficiency of individual robots (Fig.
5). For instance, Robot 2’s travel pattern indicated route
optimization that maximized item collection while minimizing
unnecessary movement(Fig. 6).

5) Obstacle Interaction: Logged velocity adjustments in
response to obstacles quantitatively demonstrated the system’s
effective real-time response mechanisms. The absence of col-
lision incidents across simulations underscores the efficacy of
our obstacle avoidance strategies.

Fig. 6: Heatmap of Robot I, II and III

Fig. 7: Heatmap of the
system and item spawns

The analysis on default seed,
supported by quantitative data and
qualitative observations, validates
the autonomous system’s capa-
bility to navigate complex envi-
ronments, prioritize tasks strate-
gically, and maintain high lev-
els of safety and coordination
even with added artificial sensor
noises. These insights not only
affirm the design and implemen-
tation choices but also illuminate
areas for further refinement, par-
ticularly in path optimization and

inter-robot coordination. Continued development, informed
by the rich dataset accumulated, is crucial for enhancing
the system’s real-world applicability and performance relia-
bility. By fine-tuning velocity and other parameters specific
to the environment, we achieved a notable improvement of
50.7% in efficiency within a single-robot configuration. This
demonstrates potential benefits for a multi-robot setup as
well, although it remains untested due to time limitations and
computational resources constraints.

IV. EVALUATION

A. Strengths

1) Modular Design: The system’s modular architecture,
as outlined in the Design section, allows for easy scalability
and adaptability. Individual components can be upgraded or
replaced without affecting the overall system functionality.

2) Robust Data Fusion and Processing: The implemen-
tation’s effective use of sensor fusion, as described in the
Implementation section, significantly enhances environmental
perception, leading to more accurate decision-making.

3) Advanced Autonomous Decision-Making: The integra-
tion of a state machine with a behavior tree ensures that the
robot can handle a wide range of scenarios autonomously and
respond appropriately to dynamic environmental changes.

4) Efficient Navigation and Path Planning: Utilizing the
NAV2 Stack provides the system with robust path planning
and obstacle avoidance capabilities, crucial for real-world.

B. Weaknesses

1) Complexity in Integration: While modular design aids
flexibility, it also introduces complexity in integration and
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communication between modules, which can be a challenge
during troubleshooting and maintenance.

2) Sensor Limitations: The reliance on specific sensors
like LiDAR and cameras can be a limitation in environments
where these sensors are less effective, such as in poor lighting
conditions or in the presence of reflective surfaces [20].

3) Resource Intensiveness: The computational demands
of processing sensor data and running complex algorithms
for autonomy can strain the system resources, particularly in
smaller or less powerful robots.

4) Predictability in Behavior: Despite the randomness
introduced in the behavior tree, there’s a possibility of de-
veloping predictable patterns over time, which might not be
ideal in all application scenarios.

C. Transferability to Reality

1) Environmental Variability: Real-world environments
are more unpredictable and varied than simulations [21]. The
system’s adaptability to such conditions needs further testing.

2) Hardware Constraints: The performance in the real
world might be affected by hardware limitations not present
in the simulation.

3) Safety and Reliability: Ensuring consistent safety and
reliability in diverse real-world scenarios is critical and needs
extensive field testing [22].

D. Proposed Improvements

1) Advanced Sensor Integration: Incorporating additional
sensors, such as ultrasonic or thermal sensors, could mitigate
the limitations of the current sensor setup.

2) Resource Optimization: Optimization algorithms could
be implemented to reduce computational load and improve
efficiency.

3) Enhanced Randomness in Decision-Making: Intro-
ducing more sophisticated algorithms for randomness could
prevent predictability in behavior patterns.

4) Field Testing and Iterative Development: Rigorous real-
world testing and iterative development are essential to refine
the system for practical applications.

In conclusion, while our solution demonstrates strong po-
tential for autonomous item retrieval with a high degree of
efficiency and adaptability, it also presents areas for improve-
ment, particularly in terms of system complexity and real-
world applicability. Continuous development and testing will
be key to advancing the system’s readiness for the real-world.

V. SAFETY AND ETHICS

Implementing a robot in an interactive environment requires
careful consideration of safety and ethics to ensure the well-
being of both users and the robot itself. Here are some key
principles to follow:

A. Safety Implications

The deployment of autonomous mobile robots, particularly
in public or unpredictable environments, raises several safety
considerations:

1) Collision Avoidance: Our design incorporates advanced
sensors and algorithms to detect and avoid obstacles. How-
ever, ensuring fail-safe mechanisms to prevent collisions with
humans or property is paramount [8].

2) Emergency Handling: The system must be equipped
with emergency stop functionalities and robust error handling
to manage unexpected scenarios or system failures.

3) Data Security: Protecting the data collected by robots,
especially in environments where personal or sensitive infor-
mation might be encountered, is essential to prevent breaches.

4) Hardware and Software Reliability: Continuous testing
and validation of both hardware components and software
algorithms are necessary to minimize malfunctions that could
lead to safety hazards.

B. Ethical Considerations

Autonomous robotic systems also present several ethical
challenges:

1) Privacy Concerns: The use of cameras and sensors
can inadvertently capture private information. It is crucial
to implement measures that respect privacy, such as data
anonymization and strict usage policies.

2) Autonomy vs Control: Balancing the level of autonomy
with human oversight is essential to maintain control over the
system’s actions and decisions, ensuring they align with ethical
standards.

3) Impact on Employment: The introduction of au-
tonomous systems in various sectors could impact jobs, raising
ethical questions about displacement and the need for re-
skilling programs.

4) Bias and Fairness: Ensuring the algorithms driving
these robots are free from biases and make fair decisions, espe-
cially in scenarios involving human interaction, is a significant
ethical obligation.

C. Reflection in Our Solution

Our solution addresses these safety and ethical considera-
tions in several ways:

1) Robust Safety Protocols: We have integrated multiple
layers of safety mechanisms, from sensor-based collision
avoidance to emergency stop features [5].

2) Data Handling Policies: Our system design includes
guidelines for data usage and storage, with a focus on main-
taining privacy and security.

3) Human-in-the-Loop: We maintain a level of human
oversight in the system’s operations to ensure ethical decision-
making and address potential job displacement concerns by
envisioning roles where humans and robots collaborate.

4) Bias Mitigation: We are committed to continually test-
ing and refining our algorithms to prevent biases and ensure
fairness in the system’s functioning.

In conclusion, while our autonomous mobile robot system
is designed with safety and ethical considerations at its core,
ongoing evaluation and adaptation of these aspects are crucial
as the technology evolves and interacts more closely with
human environments.
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